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on the attenuation coefficient is not as marked. The results
confirm that the change in the propagation coefficient is due to
the longitudinal magnetoresistance effect. The results also show
that the longitudinal magnetoresistance effect at 30 GHz is of
the same order as the dc value. This was expected from previous
investigations [8], [9] which showed the frequency independence
of transverse magnetoresistance effects.

EXPERIMENTAL DETAILS

The experimental results were obtained using a microwave
transmission bridge operating at 30 GHz and carefully adjusted
to avoid internal reflections within the bridge. The semiconductor
samples were cut from a single crystal block of germanium using
a diamond saw and then lapped to the required dimensions. The
internal dimensions of the waveguide are 7.112 x 3.556 mm +
0.02 mm and the samples were lapped to 7.05 x 3.53 mm to
enable them to be inserted and removed from the waveguide
without chipping or cracking. The samples were lapped to size
on fine (1000) carborundum paper and the front and back faces
were then polished with a fine aluminum oxide powder. The
samples were then quickly etched in an acid solution and washed
in acetone and distilled water.

The effect of the air gap between the sample and the wave-
guide walls has been discussed in [5] and correction terms are
given. For this case the correction terms are small and were
reduced further by coating the sides of the sample in contact with
the waveguide walls with a highly conducting silver epoxy.
However, the air gap still had a slight but noticeable effect on the
phase coefficient. This effect is larger when the air gap is dis-
tributed equally at both the broad walls of the guide rather than
when one side of the sample is in complete contact with the
broad wall,

DC measurements of the conductivity and magnetoresistivity
were made with rectangular specimens suitably etched to remove
any higher conductivity surface layers and leads were soldered
to the samples using Sn/Sb solder.

Since single crystal samples were used, it was necessary to
ensure that the current and magnetic-field directions retained
the same orientation with respect to the crystal axes for both the
dc and microwave measurements. The direction of microwave
propagation was always taken along the (111} crystal axis.

CONCLUSION

The effect of a steady magnetic field on microwave propagation
through a fully filled semiconductor-loaded waveguide has been
analyzed. When the magnetic field is perpendicular to the electric
field of the incident TE; , mode, the propagation can be explained
in terms of the distortion of the TE;, mode by the Hall effect.
The simple theory of spherical constant-energy surfaces is shown
to give good results in this case. Although the transverse magneto-
resistance effect is implicit in this method, this effect itself does
not adequately account for the magnetic-field dependency of the
propagation coefficient. When the magnetic field is parallel to the
incident electric field, the TE,, mode is the propagating mode
and the effect of the magnetic field on the propagation coefficient
is explained by longitudinal magnetoresistance effects. The
results indicate that magnetoresistance is frequency independent
for frequencies at least as high as 30 GHz.

The relaxation time 7 has also been shown to affect the propa-
gation coeflicient at this frequency, although it would be difficult
to estimate the relaxation time from these measurements. To
enable 7 to be measured in this way the conductivity and dielectric
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constant would need to be known very accurately. Experimental
problems, such as sample inhomogeneity and the limited accuracy
of commercially available microwave components, would also
need to be overcome. However, this method of measurement
provides a simple means of measuring the Hall mobility of semi-
conductors at microwave frequencies.

REFERENCES

[1] M. H. Engineer and B. R. Nag, “Propagation of electromagnetic waves
in rectangular guides filled with a semiconductor in the presence of a
transverse magnetic field,” JEEE Trans. MTT, vol. 13, pp. 641-646,
Sept. 1965.

[2] J. Ness and M. W. Gunn, “Microwave propagation in rectangular
waveguide containing a semiconductor subject to a transverse magnetic
field,”” IEEE Trans. MTT-23, Sept. 1975.

[3] S. Kataoka and M. Fujisada, “Magnetoresistance effect in InSb at
ngélémeter wavelength,” Solid State Electronics, vol. 11, pp. 163-171,
1 .

[4] R. A. Smith, Semiconductors. Cambridge Press, pp. 110-117, 1959.

[5] R. M. Sheikh, “The effect of frequency, doping and temperature on
the complex permittivity of N-type germanium,” Ph.D. thesis, McMaster
University, Ontario, Canada, 1968.

[6] J. K. Hutton, “Analysis of microwave measurements techniques by
rrg:s%ns of signal flow graphs,” IRE Trans. MTT-8, pp. 206-212, March
1 .

[71 W. C. Dunlap, An Introduction to Semiconductors.
Wiley and Sons, p. 225, 1957.

[8] S. F. Sun, ‘“Magnetoresistance of InSb at a microwave frequency,”
Journal of Applied Physics, vol. 35, pp. 211-214, Jan. 1964.

91 R. Koike and H. E. M. Barlow, “Microwave measurements on the
magnetoresistance effect in semiconductors,” Proc. IEE, vol. 109B,
pp. 137-144, March 1962.

New York: John

Propagation Along a Braided Coaxial Cable Located Close
to a Tunnel Wall

DAVID A. HILL, SENIOR MEMBER, IEEE, AND
JAMES R. WAIT, rFELLOW, IEEE

Abstract—A previous development is extended to permit attenuation
calculations when a braided cable is located close to a tunnel wall. This
is an important case in mine communications utilizing leaky feeders.
Numerical results are presented to illustrate the effects of numerous
parameters on mode attenuation. A principal finding is that the atten-
uation rate for the bifilar mode is hardly affected at all by the finite
conductivity of the wall. On the other hand, the monofilar mode suffers
a very high attenuation when the cable approaches the wall.

INTRODUCTION

The leaky-feeder technique is now being developed for com-
munication in mines [1]. In this method, referred to as con-
tinuous-access guided communications (CAGC), the signals are
guided by some type of transmission line. The energy is coupled
into or out of the channel by antennas in the vicinity of the
transmission line which may be a coaxial cable [2] or a twin-
wire line [3], [4]

We have previously derived a mode equation for a braided
coaxial cable within a circular tunnel and we presented some
numerical results [5]. However, that mode equation is very
poorly convergent when the cable is located close to the tunnel
wall. Unfortunately, it is precisely this case which is of most
practical interest for communication in coal mines where it is
generally necessary to lay the cable close to the wall [6]. In this
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Fig. 1.

The braided coaxial cable.

Fig. 2. The geometry of the cable in a circular tunnel.

short paper, we derive a rapidly convergent mode equation which
is used to obtain numerical results for the attenuation rates of the
dominant modes when the cable is located close to a circular
tunnel wall.

MobE EqQuATION

The geometry of the braided coaxial cable is shown in Fig. 1.
The center conductor of radius a is assumed to have a very high
but finite conductivity o,,. The insulation of radius b is a lossless
dielectric of permittivity ¢. The metal braid of radius b is repre-
sented by a transfer impedance Z; which is given by [2]

Zp = iwLy )

where L is the transfer inductance and exp (ico?) time dependence
is assumed. The coating of radius c is a lossless dielectric of
permittivity &.. A thin lossy film of radius c is characterized by a
transfer impedance Z, which is given by [5]

Z; = Qmcod)™! )

where od is the conductivity-thickness product of the film.
Rawat and Beal [7] indicate that the presence of such lossy films
should be expected in realistic mine environments due to moisture
and/or dust accumulation.

The idealized circular-tunnel geometry and the cylindrical
coordinate system (p, ¢,z ) are shown in Fig. 2. The air-filled tun-
nel has a radius a, and is bounded by a lossy dielectric of con-
ductivity o, and permittivity ¢,. Free-space permeability u, is
assumed everywhere. The braided cable is located within the
tunnel at (pg, ¢g)-

We assume that the individual modes of the structure vary
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in the z direction as exp (—I'z) for a time factor exp (iwt) and
the objective is to calculate the values of the propagation constant
I'. By matching the tangential-field components at the tunnel
boundary (p = a,) and applying an impedance condition at the
edge of the cable (p = py + ¢, ¥ = ), the following mode
equation has been derived [5], [8]:

iwpgv?
2myy

[Ko(ve) = §] - Z(T) =0 €))

where v = (yo2 — T2, y,2 = w?uye,, and Ky is the modified
Bessel function of the second kind. The summation of cylindrical
harmonics S represents the effect of the tunnel boundary and is
given by [8]

C))

where

T, = &,R K.n(vao)

miim Im(vao) Im(vpo)lm(U(Po + C))

1, m=0
&y =
{2, m#0
_ [0o/0)K, (va0)/ Kn(vao)] + Yutlo + Omflo
[(vo/v)Ly (vag)/Lu(vag)] + Yo + Smio
v = (2 ) K (uao)
" (u,uoa) K, (uay)
(imTfag)* (=2 — u™?)
[(Vo/v) ' Wao)/ L(vao)] + Zuino

Z = — ia)”o) Kml(uao)
" u ) K(uao)

u= (32 — TH2

Ho = (.uo/t‘-'o)1 2

5m’70 =

2 = jouylo, + iwe,)

Ye

I, and K, are modified Bessel functions of the first and second
kind, and the prime indicates differentiation with respect to the
argument. The series impedance per unit length of the cable
Z(I") has the following form, provided that the cable radius c is
electrically small [5]:

Z,
Z(T) = Z(Z, + Z;)
ZAZ + Z;
z,= 22+ 2) )
Zr+ Z' + Z,
where
C2 T2
Z = Z—F In (b/a), y? = —w?uee
27miwe
2 _ 12
Z, = Z‘—r In (c/b), 7.2 = — Uk,
2niwe,

(iCUllo)1 2] o(V@)

f= , = (iopeo,)'"?
' Queao ) L)' o

and ly,,| is assumed much larger than |T|.

ASYMPTOTIC BEHAVIOR

Although some approximations to the mode equation (3) are
possible under certain limiting conditions, a numerical evaluation
of (3) is generally required. Numerical results for the propagation
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constant I' have been obtained using a modification of Newton’s
method [5], but convergence problems inhibit a direct evaluation
of S as given by (4) when p,/a, is nearly equal to unity. Here we
develop an efficient method to treat this important case where the
cable is near the wall.

The first step is to examine the asymptotic behavior of the mth
term 7,, in (4) as m becomes large. The first terms of the required
uniform asymptotic expansions [9] are

1 exp (v)

Loz ~ SR T T )i

n\'/* exp (—vn)
K02 (2—) a+
, 1 1+ zH)HY exp (vp)
Iv (VZ) (27"))1/2 z -
, 1 (1 + z)Y exp (—vp)
K,/ (vz) ~ G . (6)

where

—A+DV 4| —2— .
n=Aa+z) +n[1+(1+z2)1/2

If welet m = vand x = vz and if m > |x|, the following can be
derived from (6): -

1 e\™ .
W) ~ G (a)

T 1/2 e -m -
Ko~ () ()

Iyx) m

L(x) x

K/  _m @
K,.(x) x

The expressions in (7) also reveal the problem that 7,, can become
too small and X, can become too large for computer storage as m
becomes large. However, by substituting (7) into (4) the following
simple asymptotic expression is obtained for 7,,:
Tm ~ g [Po(/’o 2+ c)]m - Tma (8)
m dg
where R? is the asymptotic expression for R, and is independent
of m. The explicit expression for R? is obtained by dividing the
numerator and denominator of R,, by m and substituting the
asymptotic expressions from (7)

Vo o Yu'flo | Om'flo
RE = v*ay m m 9)
Yo + YN0 + On'flo
via, m m
where
Yu'tlo _ —ive’Mo
m wpgu?ag
In’flo _ (iT/ap)’(v™? — u™2)?
m Yo 7+ Zma
Uzao Nom
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and
N YA _
Hom

iopg
w*aoio '
The poor convergence of (4) for pg/a, close to unity is apparent

from the expression for 7,,% in (8). However, the following sum-
mation formula [10] may be used:

m

Qor
Y —=-ma-n. (10)
m=1m
Thus, from (8) and (10), we can write
T %= —R'In [1 —”lfl(—”ﬂg—c)]. (11)
m=1 Qg

By subtracting (11) from (4), the following rapidly convergent
form is obtained for S:

_ Polpe + C)]
2

S = —RIn [1

ao

o0
+ To+ Y (T — T,Y. (12)
m=1
This form is used in the mode equation (3) to obtain numerical .
results,

If the tunnel becomes very large electrically, the arguments of
the Bessel functions (va, and ua,) can be quite large and (12) may
not converge rapidly. However, computation time could still be
decreased by employing asymptotic expansions which are valid
for large order and large argument. These are

Im/(x) N ﬂ 1 - )i 1/2

L(x) «x ( mz)

Kyx) -m( x_i 1/2

K. x) x (1 m2) 13

but they are not valid when x is near ». Wait [11] has examined
such approximations in a study of whispering-gallery modes in
electrically large cylinders.

NUMERICAL RESULTS

Using the mode equation (3) along with the rapidly convergent
form of S in (12), numerical results for the propagation constant
T" were obtained for both the monofilar and bifilar modes. The
energy in the bifilar mode is concentrated primarily within the
insulation, and the solution is found in the neighborhood I' ~ y,
where y is the propagation constant of the insulation. For the
monofilar mode, the forward current is carried by the cable and
the return current is carried by the tunnel wall. Consequently, the
solution is found in the neighborhood I" ~ ¥4, where y, is the
free-space propagation constant. In either case the attenuation
rate « is given by

« = Re (I)(Np/m) = 8.686 x 10° Re (T)(dB/km).  (14)

In all cases the tunnel radius gy was taken as 2 m, and the
following cable parameters were used: a = 1.5mm, b = 10 mm,
¢ = 11.5mm, o, = 57 x 107 mho/m, ¢feq = 2.5, ¢./eq = 3.0,
and od = 1073 mho. All figures cover the frequency range
from 1 to 20 MHz. For higher frequencies, (12) is no longer
rapidly convergent.

Figs. 3-5 show attenuation rates for the bifilar mode for wall
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Fig. 3. The effect of cable position on the attenuation rate of the bifilar
mode. The cable parameters correspond to the FONT cable. (Param-
eters: Lr = 40nH/m,a = 1.5mm, b = 10 mm, ¢ = 11.5mm, qy = 2 m,
£./eg = 10,'6, = 103 mho/m, a,, = 5.7 x 107 mho/m, od = 1073
mho, g/eg = 2.5, g./go = 3.0.)
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Fig. 4. The attenuation rate of the bifilar mode for a reduced value of Ly.
(Parameters as in Fig. 3, but Lr = 10 nH/m.)
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Fig. 5. The attenuation rate of the bifilar mode for a further reduced
value of L. (Parameters as in Fig. 3, but Ly = 2 nH/m.)

constants, ¢, = 10~% mho/m and g,/s, = 10. In Fig. 3, Ly is
taken to be 40 nH/m which corresponds to the very high transfer
inductance of the FONT cable developed by Fontaine e# al. [2].
For pgja, = 0.98, the cable center is only 4 cm from the wall,
and the attenuation rate is increased significantly. The optimum
frequency for this cable has been claimed to be approximately
7 MHz [2]. Most coaxial cables possess a much lower value of
Ly [12]. and Fig. 4 shows the same case with Ly reduced to
10 nH/m. Fig. 5 shows the same case with L, reduced. even
further to 2 nH/m, and in this case the tunnel wall has essentially
no effect on the attenuation rate. Fig. 6 shows the rather com-
plicated effect of wall conductivity on the attenuation rate of the
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Fig. 6. The effect of tunnel-wall conductivity on the attenuation rate
of the bifilar mode. (Parameters: @, = 2 m, ppla, = 0.98, £./eo = 10,
Ly =40nH/m,a= 1.5mm, b = 10mm, ¢ = 11.5mm, ¢d = 10”3 mho,
dw = 5.7 x 107 mho/m, &feg = 2.5, &./eo = 3.0.)
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Fig. 7. The effect of cable position on the attenuation rate of the mono-
filar mode. (Parameters as in Fig. 3.)

bifilar mode for po/a, = 0.98 and Ly = 40 nH/m. For smaller
values of py and/or Ly, the wall conductivity has a lesser effect.
Fig. 7 shows the effect of cable position on the attenuation rate
of the monofilar mode. Note that the attenuation rate is in
general an order of magnitude higher than that of the bifilar
mode. Even for the increased wall conductivity (s, = 107!
mho/m) shown in Fig. 8, the attenuation rate is still quite high.

CoNCLUDING REMARKS

A method has been developed for treating the important
practical case of the cable close to the tunnel wall. It is found
that the tunnel wall has little effect on the attenuation rate of the
bifilar mode unless the cable has a very large transfer inductance
and is located close to the wall as shown in Fig. 3. The monofilar
mode has a high attenuation rate for most cases of interest and is
probably of use only if some mode conversion exists between the
monofilar and bifilar modes.
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Fig. 8. The effect of tunnel-wall conductivity and permittivity on the
attenuation rate of the monofilar mode. (Parameters as in Fig. 6 except
for indicated values of ¢,/¢q and o,.)

An important related area for further work is the excitation
(and reception) of the monofilar and particularly the bifilar mode.
Quantitative knowledge is required for a total calculation of
system loss and communication range. Also the use of higher
frequencies with cables close to the wall merits some attention
even though higher attenuation rates can be expected.
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Reflection Coefficient of Unéqual Displaced Rectangular
Waveguides

RALPH LEVY

Abstract—The TEC has suggested that maximum allowable displace-
ments of waveguide flanges should not cause the inherent return loss
due to waveguide tolerances to degrade more than 1 dB. Calculations
on displaced unequal waveguides at their extreme tolerances show that
this leads to a maximum allowable displacement of 0.0175 of the broad
(= a) dimension for a waveguide tolerance of +a/500. The worst return
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loss under these conditions is approximately —41 dB. However, it is
suggested that this maximum allowable displacement is based on a
statistically remote worse case condition, and relaxation to a value of
0.021a would be more realistic.

INTRODUCTION

The question of how to specify tolerances on dimensions of
locating holes and bolt diameters of rectangular-waveguide
flanges, which determine maximum waveguide misalignment, has
been under consideration by the International Electro-technical
Commission (IEC) Sub-Committee 46B for several years. At
their last meeting in Bucharest in 1974 it was proposed that
the maximum allowable displacement at a junction of two
waveguides shall be such that the degradation of return loss



